Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 482
Filtrar
1.
Sci Data ; 11(1): 356, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589398

RESUMO

Rapeseed is a critical cash crop globally, and understanding its distribution can assist in refined agricultural management, ensuring a sustainable vegetable oil supply, and informing government decisions. China is the leading consumer and third-largest producer of rapeseed. However, there is a lack of widely available, long-term, and large-scale remotely sensed maps on rapeseed cultivation in China. Here this study utilizes multi-source data such as satellite images, GLDAS environmental variables, land cover maps, and terrain data to create the China annual rapeseed maps at 30 m spatial resolution from 2000 to 2022 (CARM30). Our product was validated using independent samples and showed average F1 scores of 0.869 and 0.971 for winter and spring rapeseed. The CARM30 has high spatial consistency with existing 10 m and 20 m rapeseed maps. Additionally, the CARM30-derived rapeseed planted area was significantly correlated with agricultural statistics (R2 = 0.65-0.86; p < 0.001). The obtained rapeseed distribution information can serve as a reference for stakeholders such as farmers, scientific communities, and decision-makers.


Assuntos
Brassica napus , Agricultura , China
2.
Am J Bot ; : e16311, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38571288

RESUMO

PREMISE: Previous work searching for sexual dimorphism has largely relied on the comparison of trait mean vectors between sexes in dioecious plants. Whether trait scaling (i.e., the ratio of proportional changes in covarying traits) differs between sexes, along with its functional significance, remains unclear. METHODS: We measured 10 vegetative traits pertaining to carbon, water, and nutrient economics across 337 individuals (157 males and 180 females) of the diocious species Eurya japonica during the fruiting season in eastern China. Piecewise structural equation modeling was employed to reveal the scaling relationships of multiple interacting traits, and multivariate analysis of (co)variance was conducted to test for intersexual differences. RESULTS: There was no sexual dimorphism in terms of trait mean vectors across the 10 vegetative traits in E. japonica. Moreover, most relationships for covarying trait pairs (17 out of 19) exhibited common scaling slopes between sexes. However, the scaling slopes for leaf phosphorus (P) vs. nitrogen (N) differed between sexes, with 5.6- and 3.0-fold increases of P coinciding with a 10-fold increase of N in male and female plants, respectively. CONCLUSIONS: The lower ratio of proportional changes in P vs. N for females likely reflects stronger P limitation for their vegetative growth, as they require greater P investments in fruiting. Therefore, P vs. N scaling can be a key avenue allowing for sex-specific strategic optimization under unequal reproductive requirements. This study uncovers a hidden aspect of secondary sex character in dioecious plants, and highlights the use of trait scaling to understand sex-defined economic strategies.

3.
Animals (Basel) ; 14(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612349

RESUMO

In the pig farming industry, it is recommended to avoid groups when treating individuals to reduce adverse reactions in the group. However, can this eliminate the adverse effects effectively? Piglets were assigned to the Rewarding Group (RG), the Punishing Group (PG), and the Paired Control Group (PCG). There were six replicates in each group, with two paired piglets per replicate. One piglet of the RG and PG was randomly selected as the Treated pig (TP), treated with food rewards or electric shock, and the other as the Naive pig (NP). The NPs in the RG and PG were unaware of the treatment process, and piglets in the PCG were not treated. The behavior and heart rate changes of all piglets were recorded. Compared to the RG, the NPs in the PG showed longer proximity but less contact behavior, and the TPs in the PG showed more freezing behavior. The percentage change in heart rate of the NPs was synchronized with the TPs. This shows that after sensory avoidance, the untreated pigs could also feel the emotions of their peers and their emotional state was affected by their peers, and the negative emotions in the pigs lasted longer than the positive emotions. The avoidance process does not prevent the transfer of negative emotions to peers via emotional contagion from the stimulated pig.

4.
BMC Cancer ; 24(1): 474, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622609

RESUMO

BACKGROUND AND PURPOSE: In recent years, there has been extensive research on the role of exercise as an adjunctive therapy for cancer. However, the potential mechanisms underlying the anti-tumor therapy of exercise in lung cancer remain to be fully elucidated. As such, our study aims to confirm whether exercise-induced elevation of epinephrine can accelerate CD8+ T cell recruitment through modulation of chemokines and thus ultimately inhibit tumor progression. METHOD: C57BL/6 mice were subcutaneously inoculated with Lewis lung cancer cells (LLCs) to establish a subcutaneous tumor model. The tumor mice were randomly divided into different groups to performed a moderate-intensity exercise program on a treadmill for 5 consecutive days a week, 45 min a day. The blood samples and tumor tissues were collected after exercise for IHC, RT-qPCR, ELISA and Western blot. In addition, another group of mice received daily epinephrine treatment for two weeks (0.05 mg/mL, 200 µL i.p.) (EPI, n = 8) to replicate the effects of exercise on tumors in vivo. Lewis lung cancer cells were treated with different concentrations of epinephrine (0, 5, 10, 20 µM) to detect the effect of epinephrine on chemokine levels via ELISA and RT-qPCR. RESULTS: This study reveals that both pre- and post-cancer exercise effectively impede the tumor progression. Exercise led to an increase in EPI levels and the infiltration of CD8+ T cell into the lung tumor. Exercise-induced elevation of EPI is involved in the regulation of Ccl5 and Cxcl10 levels further leading to enhanced CD8+ T cell infiltration and ultimately inhibiting tumor progression. CONCLUSION: Exercise training enhance the anti-tumor immunity of lung cancer individuals. These findings will provide valuable insights for the future application of exercise therapy in clinical practice.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos , Quimiocinas , Carcinoma Pulmonar de Lewis/terapia , Carcinoma Pulmonar de Lewis/patologia , Microambiente Tumoral , Linhagem Celular Tumoral
5.
J Agric Food Chem ; 72(15): 8423-8433, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565327

RESUMO

Trehalases (TREs) are pivotal enzymes involved in insect development and reproduction, making them prime targets for pest control. We investigated the inhibitory effect of three thiazolidinones with piperine skeletons (6a, 7b, and 7e) on TRE activity and assessed their impact on the growth and development of the fall armyworm (FAW), Spodoptera frugiperda. The compounds were injected into FAW larvae, while the control group was treated with 2% DMSO solvent. All three compounds effectively inhibited TRE activity, resulting in a significant extension of the pupal development stage. Moreover, the treated larvae exhibited significantly decreased survival rates and a higher incidence of abnormal phenotypes related to growth and development compared to the control group. These results suggest that these TRE inhibitors affect the molting of larvae by regulating the chitin metabolism pathway, ultimately reducing their survival rates. Consequently, these compounds hold potential as environmentally friendly insecticides.


Assuntos
Alcaloides , Benzodioxóis , Inseticidas , Piperidinas , Alcamidas Poli-Insaturadas , Trealase , Animais , Larva , Spodoptera , Trealase/genética , Inseticidas/farmacologia
6.
Front Public Health ; 12: 1373747, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628846

RESUMO

The quality and safety of agricultural products are related to people's lives and health, economic development, and social stability, and have always been a hot issue of concern to the government and society. The rapid development of digital traceability technology in the digital environment has brought new opportunities for the supervision of agricultural product quality and safety, but the frequent occurrence of agricultural product safety incidents in recent years has exposed many problems such as the lack of governmental supervision, unstandardized production process of enterprises, and weak consumer awareness. To improve the cooperation efficiency of stakeholders and ensure the quality and safety of agricultural products, this paper proposes a dynamic model based on evolutionary game theory. The model incorporates the government, agricultural product producers, and farmers, and evaluates the stability and effectiveness of the system under different circumstances. The results of the study show that there are multiple evolutionary stabilization strategies in the tripartite evolutionary game model of agricultural product quality and safety supervision, and there are corresponding evolutionary stabilization conditions. There are several factors affecting the stability of the system, the most important of which are government regulation, severe penalties for agricultural product producers, and incentives. When these factors reach a certain threshold, the stakeholder cooperation mechanism can establish an evolutionarily stable strategy. This study contributes to the understanding of the operational mechanism of stakeholder cooperation in agricultural product quality and safety regulation in the digital environment and provides decision support and policy recommendations for stakeholders to promote the sustainable development and optimization of agricultural product quality and safety regulation.


Assuntos
Agricultura , Teoria do Jogo , Humanos , Desenvolvimento Sustentável , Governo
7.
Comput Struct Biotechnol J ; 23: 1534-1546, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38633388

RESUMO

Glioblastoma (GBM) is one of the most malignant tumors of the central nervous system. The pattern of immune checkpoint expression in GBM remains largely unknown. We performed snRNA-Seq and spatial transcriptomic (ST) analyses on untreated GBM samples. 8 major cell types were found in both tumor and adjacent normal tissues, with variations in infiltration grade. Neoplastic cells_6 was identified in malignant cells with high expression of invasion and proliferator-related genes, and analyzed its interactions with microglia, MDM cells and T cells. Significant alterations in ligand-receptor interactions were observed, particularly between Neoplastic cells_6 and microglia, and found prominent expression of VISTA/VSIG3, suggesting a potential mechanism for evading immune system attacks. High expression of TIM-3, VISTA, PSGL-1 and VSIG-3 with similar expression patterns in GBM, may have potential as therapeutic targets. The prognostic value of VISTA expression was cross-validated in 180 glioma patients, and it was observed that patients with high VISTA expression had a poorer prognosis. In addition, multimodal cross analysis integrated SnRNA-seq and ST, revealing complex intracellular communication and mapping the GBM tumor microenvironment. This study reveals novel molecular characteristics of GBM, co-expression of immune checkpoints, and potential therapeutic targets, contributing to improving the understanding and treatment of GBM.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38518154

RESUMO

Objective: To evaluate the effectiveness of percutaneous nephrolithotomy (PCNL) compared with open surgery for urinary stone removal. Methods: A total of 95 patients with urinary stones were screened for eligibility between October 2020 and December 2021. After excluding 5 patients who revoked their consent, 90 patients were randomized to receive either traditional open surgery (traditional group) or PCNL (PCNL group), with 45 patients in each group. In addition, the two groups received Shugan Qingre Tonglin decoction twice daily for 2 weeks. Outcome measures included intraoperative indexes, stone removal rate, postoperative healing, and quality of life. Results: PCNL resulted in significantly better intraoperative indexes (95% CI, 0.49-1.11; P < .001), lower creatinine concentration (95% CI, 0.59-1.61; P < .001), and higher glomerular filtration rate (95% CI, 2.43-2.91; P < .001) compared with traditional open surgery. Patients in the PCNL group had a significantly higher stone removal rate (95% CI, 1.09-2.51; P < .001) and a lower incidence of adverse events (95% CI, 0.69-1.87; P < .001) compared with those receiving traditional open surgery. Patients in the PCNL group had significantly higher quality of life (95% CI, 1.39-2.81; P < .001) and significantly higher maximum urinary flow rate (95% CI, 1.36-2.61; P < .001) than those in the traditional group at 1 month and 3 months after treatment. Conclusion: PCNL provides better postoperative renal function improvement, enhances the postoperative recovery of patients with urinary stones, and features manageable safety compared with traditional open surgery. The benefits of PCNL make it a promising technique for the clinical management of urinary stones. Its minimally invasive nature reduces patient discomfort, promotes faster recovery, and improves overall patient satisfaction. The superior outcomes of PCNL in terms of renal function improvement and postoperative recovery suggest that it is a viable alternative to traditional open surgery. Further research and clinical trials are warranted to validate these findings and establish PCNL as a widely adopted approach in the field of urology.

9.
Heliyon ; 10(5): e26850, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495151

RESUMO

Background: As the most common primary bone cancer, the therapy of osteosarcoma requires further study. An anthraquinone derivative, emodin, has been found to have anticancer potential. We proposed that emodin suppresses osteosarcoma by cell cycle regulation mediated by p53. Methods: This study determined the effect of emodin on viability and apoptosis of 6 osteosarcoma cell lines (p53 null cells MG63, G292, and A-673; p53 mutated cells HOS and SK-PN-DW; p53 expressing cells U2OS and 2 osteoblast cell lines), then knockdown p53 in U2OS, and observed the impacts of emodin on p53, p21, cyclin proteins, and cell cycle. Results: High dose emodin (40-160 µM) induced cell death and apoptosis of all the cell lines; medium dose emodin (20 µM) preferentially inhibited osteosarcoma cells; low dose emodin (1-10 µM) preferentially inhibited p53 expressing osteosarcoma cells. Emodin dose-dependently inhibited p53 and p21 in U2OS. Emodin at 10 µM decreased the expression of Cdk2, E2F, and Cdk1; and increased RB but had no effects on cyclin E and cyclin B. The knockdown of p53 almost eliminated all the impacts of 10 µM emodin on cell cycle proteins. Conclusions: Emodin suppresses U2OS by p53-mediated cell cycle regulation.

10.
J Phys Chem C Nanomater Interfaces ; 128(11): 4470-4482, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38533242

RESUMO

Tailoring nanoscale catalysts to targeted applications is a vital component in reducing the carbon footprint of industrial processes; however, understanding and controlling the nanostructure influence on catalysts is challenging. Molybdenum disulfide (MoS2), a transition metal dichalcogenide (TMD) material, is a popular example of a nonplatinum-group-metal catalyst with tunable nanoscale properties. Doping with transition metal atoms, such as cobalt, is one method of enhancing its catalytic properties. However, the location and influence of dopant atoms on catalyst behavior are poorly understood. To investigate this knowledge gap, we studied the influence of Co dopants in MoS2 nanosheets on catalytic hydrodesulfurization (HDS) through a well-controlled, ligand-directed, tunable colloidal doping approach. X-ray absorption spectroscopy and density functional theory calculations revealed the nonmonotonous relationship between dopant concentration, location, and activity in HDS. Catalyst activity peaked at 21% Co:Mo as Co saturates the edge sites and begins basal plane doping. While Co prefers to dope the edges over basal sites, basal Co atoms are demonstrably more catalytically active than edge Co. These findings provide insight into the hydrogenolysis behavior of doped TMDs and can be extended to other TMD materials.

11.
Brain Res ; 1833: 148868, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38519008

RESUMO

Meningeal lymphatic vessels (MLVs) have crucial roles in removing metabolic waste and toxic proteins from the brain and transporting them to the periphery. Aged mice show impaired meningeal lymphatic function. Nevertheless, as the disease progresses, and significant pathological changes manifest in the brain, treating the condition becomes increasingly challenging. Therefore, investigating the alterations in the structure and function of MLVs in the early stages of aging is critical for preventing age-related central nervous system degenerative diseases. We detected the structure and function of MLVs in young, middle-aged, and aged mice. Middle-aged mice, compared with young and aged mice, showed enhanced meningeal lymphatic function along with MLV expansion and performed better in the Y maze test. Moreover, age-related changes in meningeal lymphatic function were closely associated with vascular endothelial growth factor-C (VEGF-C) expression in the brain cortex. Our data suggested that the cerebral cortex may serve as a target for VEGF-C supplementation to ameliorate meningeal lymphatic dysfunction, thus providing a new strategy for preventing age-related central nervous system diseases.

12.
Cell Discov ; 10(1): 30, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485705

RESUMO

The human organic cation transporter 1 (hOCT1), also known as SLC22A1, is integral to hepatic uptake of structurally diversified endogenous and exogenous organic cations, influencing both metabolism and drug pharmacokinetics. hOCT1 has been implicated in the therapeutic dynamics of many drugs, making interactions with hOCT1 a key consideration in novel drug development and drug-drug interactions. Notably, metformin, the frontline medication for type 2 diabetes, is a prominent hOCT1 substrate. Conversely, hOCT1 can be inhibited by agents such as spironolactone, a steroid analog inhibitor of the aldosterone receptor, necessitating a deep understanding of hOCT1-drug interactions in the development of new pharmacological treatments. Despite extensive study, specifics of hOCT1 transport and inhibition mechanisms remain elusive at the molecular level. Here, we present cryo-electron microscopy structures of the hOCT1-metformin complex in three distinct conformational states - outward open, outward occluded, and inward occluded as well as substrate-free hOCT1 in both partially and fully open states. We also present hOCT1 in complex with spironolactone in both outward and inward facing conformations. These structures provide atomic-level insights into the dynamic metformin transfer process via hOCT1 and the mechanism by which spironolactone inhibits it. Additionally, we identify a 'YER' motif critical for the conformational flexibility of hOCT1 and likely other SLC22 family transporters. Our findings significantly advance the understanding of hOCT1 molecular function and offer a foundational framework for the design of new therapeutic agents targeting this transporter.

13.
J Nanobiotechnology ; 22(1): 111, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486273

RESUMO

Brain damage is a common tissue damage caused by trauma or diseases, which can be life-threatening. Stem cell implantation is an emerging strategy treating brain damage. The stem cell is commonly embedded in a matrix material for implantation, which protects stem cell and induces cell differentiation. Cell differentiation induction by this material is decisive in the effectiveness of this treatment strategy. In this work, we present an injectable fibroin/MXene conductive hydrogel as stem cell carrier, which further enables in-vivo electrical stimulation upon stem cells implanted into damaged brain tissue. Cell differentiation characterization of stem cell showed high effectiveness of electrical stimulation in this system, which is comparable to pure conductive membrane. Axon growth density of the newly differentiated neurons increased by 290% and axon length by 320%. In addition, unfavored astrocyte differentiation is minimized. The therapeutic effect of this system is proved through traumatic brain injury model on rats. Combined with in vivo electrical stimulation, cavities formation is reduced after traumatic brain injury, and rat motor function recovery is significantly promoted.


Assuntos
Bombyx , Lesões Encefálicas Traumáticas , Fibroínas , Células-Tronco Mesenquimais , Células-Tronco Neurais , Nitritos , Elementos de Transição , Ratos , Animais , Fibroínas/metabolismo , Fibroínas/farmacologia , Bombyx/metabolismo , Hidrogéis/farmacologia , Neurônios/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo
14.
J Cell Mol Med ; 28(6): e18115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436544

RESUMO

Ovarian cancer is one of the most common gynaecological malignancies with poor prognosis and lack of effective treatment. The improvement of the situation of ovarian cancer urgently requires the exploration of its molecular mechanism to develop more effective molecular targeted drugs. In this study, the role of human ribosomal protein l35a (RPL35A) in ovarian cancer was explored in vitro and in vivo. Our data identified that RPL35A expression was abnormally elevated in ovarian cancer. Clinically, high expression of RPL35A predicted short survival and poor TNM staging in patients with ovarian cancer. Functionally, RPL35A knock down inhibited ovarian cancer cell proliferation and migration, enhanced apoptosis, while overexpression had the opposite effect. Mechanically, RPL35A promoted the direct binding of transcription factor YY1 to CTCF in ovarian cancer cells. Consistently, RPL35A regulated ovarian cancer progression depending on CTCF in vitro and in vivo. Furthermore, RPL35A affected the proliferation and apoptosis of ovarian cancer cells through PPAR signalling pathway. In conclusion, RPL35A drove ovarian cancer progression by promoting the binding of YY1 and CTCF promoter, and inhibiting this process may be an effective strategy for targeted therapy of this disease.


Assuntos
Neoplasias dos Genitais Femininos , Neoplasias Ovarianas , Proteínas Ribossômicas , Feminino , Humanos , Apoptose/genética , Proliferação de Células/genética , Neoplasias Ovarianas/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Fator de Ligação a CCCTC/genética
15.
Clin Transl Sci ; 17(3): e13769, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38515348

RESUMO

Tislelizumab, an anti-programmed cell death protein 1 monoclonal antibody, has demonstrated improved survival benefits over standard of care for multiple cancer indications. We present the clinical rationale and data supporting tislelizumab dose recommendation in patients with advanced tumors. The phase I, first-in-human, dose-finding BGB-A317-001 study (data cutoff [DCO]: August 2017) examined the following tislelizumab dosing regimens: 0.5-10 mg/kg every 2 weeks (q2w), 2-5 mg/kg q2w or q3w, and 200 mg q3w. Similar objective response rates (ORRs) were reported in the 2 and 5 mg/kg q2w or q3w cohorts. Safety outcomes (grade ≥3 adverse events [AEs], AEs leading to dose modification/discontinuation, immune-mediated AEs, and infusion-related reactions) were generally comparable across the dosing range examined. These results, alongside the convenience of a fixed q3w dose, formed the basis of choosing 200 mg q3w as the recommended dosing regimen for further clinical use. Pooled exposure-response (E-R) analyses by logistic regression using data from study BGB-A317-001 (DCO: August 2020) and three additional phase I/II studies (DCOs: 2018-2020) showed no statistically significant correlation between tislelizumab pharmacokinetic exposure and ORR across multiple solid tumor types or classical Hodgkin's lymphoma, nor was exposure associated with any of the safety end points evaluated over the dose range tested. Hence, tislelizumab showed a relatively flat E-R relationship. Overall, the totality of data, including efficacy, safety, and E-R analyses, together with the relative convenience of a fixed q3w dose, provided clinical rationale for the recommended dosing regimen of tislelizumab 200 mg q3w for multiple cancer indications.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias Hematológicas , Neoplasias , Humanos , Anticorpos Monoclonais Humanizados/farmacocinética , Neoplasias/patologia
16.
Dalton Trans ; 53(15): 6601-6608, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38512315

RESUMO

Multi-functionalised nano-platforms based on persistent-luminescence nanoparticles (PLNPs) have attracted considerable attention for biomedical applications owing to their lack of background noise and suitability for in vivo imaging without the need for in situ excitation. However, nano-platforms based on PLNPs for continuous photodynamic therapy (PDT) are currently lacking. Herein, we report a nano-platform (LiGa4.99O8:Cr0.01/IrO2, LGO:Cr/IrO2) prepared using PLNPs (LiGa4.99O8:Cr0.01, LGO:Cr) covalently bonded with iridium oxide nanoparticles (IrO2 NPs), producing near-infrared (NIR) persistent luminescence, "afterglow" PDT and photo-thermal therapy (PTT) effects. The LGO:Cr/IrO2 not only exhibits NIR-persistent luminescence at 719 nm and a PTT effect under 808 nm irradiation but also a continuous "afterglow" PDT effect without the need for in situ excitation owing to persistent energy transfer from LGO:Cr to the IrO2 NPs, in turn generating reactive oxygen species (ROS). This multi-functional nano-platform is expected to further promote the application of PLNPs in tumour treatment.


Assuntos
Nanopartículas , Neoplasias , Humanos , Luminescência , Diagnóstico por Imagem
17.
Anim Biosci ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38419544

RESUMO

Objective: The present study evaluated the effect of flaxseed meal degraded by a protease, Lactobacillus plantarum, or both on the growth performance, nutrient digestibility, and health status of broilers. Methods: There were four diets containing flaxseed meals in its non-degraded form (control, CON), degraded with 3,000 U/kg of protease (ELM), 1.0×109 CFU/kg of Lactobacillus plantarum (FLM), or both (DLM). Each form of flaxseed meals was added at 15% of diet. A total of 480 yellow-feathered broilers at 22 d of age were distributed into 4 groups with 6 replicates of 20 chickens each. The feeding trial lasted for 42 d. Growth performance, apparent fecal digestibility (dry matter, energy, crude protein, and ash), and serum immunoglobins and antioxidases were determined at 42 and 63 d of age. Results: Results showed that ELM, FLM, and DLM increased (p<0.001) the contents of peptides and decreased (p<0.001) cyanogenic glycosides, compared to CON. The diets with degraded flaxseed meals increased (p<0.05) feed intake and body weight gain throughout the feeding trial, and the digestibility of energy, crude protein, and ash at the end of feeding trial. Furthermore, all degraded groups enhanced (p<0.05) broiler health status by increasing serum immunoglobulins A and G. Additinally, DLM showed more pronounced effects (p<0.05) on these parameters than ELM or FLM. Conclusion: Flaxseed meals degraded by enzymolysis, fermentation, or both had improved nutrition and application in broilers.

18.
Cell Rep ; 43(2): 113779, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38358891

RESUMO

R-loops are three-stranded structures that can pose threats to genome stability. RNase H1 precisely recognizes R-loops to drive their resolution within the genome, but the underlying mechanism is unclear. Here, we report that ARID1A recognizes R-loops with high affinity in an ATM-dependent manner. ARID1A recruits METTL3 and METTL14 to the R-loop, leading to the m6A methylation of R-loop RNA. This m6A modification facilitates the recruitment of RNase H1 to the R-loop, driving its resolution and promoting DNA end resection at DSBs, thereby ensuring genome stability. Depletion of ARID1A, METTL3, or METTL14 leads to R-loop accumulation and reduced cell survival upon exposure to cytotoxic agents. Therefore, ARID1A, METTL3, and METTL14 function in a coordinated, temporal order at DSB sites to recruit RNase H1 and to ensure efficient R-loop resolution. Given the association of high ARID1A levels with resistance to genotoxic therapies in patients, these findings open avenues for exploring potential therapeutic strategies for cancers with ARID1A abnormalities.


Assuntos
Adenina/análogos & derivados , Estruturas R-Loop , RNA , Ribonuclease H , Humanos , Instabilidade Genômica , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Metiltransferases/genética
19.
J Am Chem Soc ; 146(8): 5051-5055, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373353

RESUMO

The construction of quaternary carbon centers via C-C coupling protocols remains challenging. The coupling of tertiary C(sp3) with secondary or tertiary C(sp3) counterparts has been hindered by pronounced steric clashes and many side reactions. Herein, we have successfully developed a type of bisphosphine ligand iron complex-catalyzed coupling reactions of tertiary alkyl halides with secondary alkyl zinc reagents and efficiently realized the coupling reaction between tertiary C(sp3) and secondary C(sp3) with high selectivity for the initial instance, which provided an efficient method for the construction of quaternary carbon centers with high steric hindrance. The combination of an iron catalyst and directing group of the substrate makes the great challenging transformation possible.

20.
J Environ Sci (China) ; 140: 242-254, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331505

RESUMO

Reasonably designing highly active, environmentally friendly, and cost-effective catalysts for efficient elimination of pollutants from water is desirable but challenging. Herein, an efficient heterogeneous photo-Fenton catalyst tourmaline (TM)/tungsten oxide (WO3-x) (named TW10) containing tungsten/boron/iron (W/B/Fe) synergistic active centers and 90% of cheap natural tourmaline (TM) mineral rich in Fe and B elements. The TW10 catalyst can quickly activate peroxymonosulfate (PMS) to generate massive active free radicals, which may induce the rapid and efficient degradation of tetracycline (TC). The TW10/PMS/Visible light system can effectively degrade up to 98.7% of tetracycline (TC) in actual waters (i.e. seawater, Yellow River, and Yangtze River water), and the catalytic degradation rates reach 1.65, 5.569, and 2.38 times higher than those of TM, WO3-x, and commercial P25 (Degussa, Germany), respectively. In addition, the catalyst can be recycled and reused multiple times. Electron spin resonance spectroscopy (EPR), X-ray photoelectron spectroscopy (XPS), and liquid chromatograph-mass spectrometer (LC-MS) analyses confirm that the synergistic catalytic effect of W/B/Fe sites on the TW10 catalyst accelerates the electron transfer between Fe(II) and Fe(III), as well as between W(V) and W(VI), and thus promotes the rapid degradation of TC. The catalytic reaction mechanism and degradation pathway of TC were explored. This work provides a feasible route for the design and development of new eco-friendly and efficient catalyst.


Assuntos
Antibacterianos , Compostos Férricos , Silicatos , Tetraciclina , Água , Peróxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...